Transductive Segmentation of Textured Meshes
نویسندگان
چکیده
This paper addresses the problem of segmenting a textured mesh into objects or object classes, consistently with user-supplied seeds. We view this task as transductive learning and use the flexibility of kernel-based weights to incorporate a various number of diverse features. Our method combines a Laplacian graph regularizer that enforces spatial coherence in label propagation and an SVM classifier that ensures dissemination of the seeds characteristics. Our interactive framework allows to easily specify classes seeds with sketches drawn on the mesh and potentially refine the segmentation. We obtain qualitatively good segmentations on several architectural scenes and show the applicability of our method to outliers removing.
منابع مشابه
A Pixon-based Image Segmentation Method Considering Textural Characteristics of Image
Image segmentation is an essential and critical process in image processing and pattern recognition. In this paper we proposed a textured-based method to segment an input image into regions. In our method an entropy-based textured map of image is extracted, followed by an histogram equalization step to discriminate different regions. Then with the aim of eliminating unnecessary details and achi...
متن کاملPerformance Analysis of Segmentation of Hyperspectral Images Based on Color Image Segmentation
Image segmentation is a fundamental approach in the field of image processing and based on user’s application .This paper propose an original and simple segmentation strategy based on the EM approach that resolves many informatics problems about hyperspectral images which are observed by airborne sensors. In a first step, to simplify the input color textured image into a color image without tex...
متن کاملBayesian Transductive Markov Random Fields for Interactive Segmentation in Retinal Disorders
In the realm of computer aided diagnosis (CAD) interactive segmentation schemes have been well received by physicians, where the combination of human and machine intelligence can provide improved segmentation efficacy with minimal expert intervention [1-3]. Transductive learning (TL) or semi-supervised learning (SSL) is a suitable framework for learning-based interactive segmentation given the ...
متن کاملInteractive Segmentation in Multimodal Medical Imagery using a Bayesian Transductive Learning Approach
Labeled training data in the medical domain is rare and expensive to obtain. The lack of labeled multimodal medical image data is a major obstacle for devising learning-based interactive segmentation tools. Transductive learning (TL) or semi-supervised learning (SSL) offers a workaround by leveraging unlabeled and labeled data to infer labels for the test set given a small portion of label info...
متن کاملInteractive Segmentation from 1-Bit Feedback
This paper presents an efficient algorithm for interactive image segmentation that responds to 1-bit user feedback. The goal of this type of segmentation is to propose a sequence of yes-or-no questions to the user. Then, according to the 1-bit answers from the user, the segmentation algorithm progressively revises the questions and the segments, so that the segmentation result can approach the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009